Skip to Main content Skip to Navigation
Journal articles

Constructive Minimax Classification of Discrete Observations with Arbitrary Loss Function

Abstract : This paper develops a multihypothesis testing framework for calculating numerically the optimal minimax test with discrete observations and an arbitrary loss function. Discrete observations are common in data processing and make tractable the calculation of the minimax test. Each hypothesis is both associated to a parameter defining the distribution of the observations and to an action which describes the decision to take when the hypothesis is true. The loss function measures the gap between the parameters and the actions. The minimax test minimizes the maximum classification risk. It is the solution of a finite linear programming problem which gives the worst case classification risk and the worst case prior distribution. The minimax test equalizes the classification risks whose prior probabilities are strictly positive. The minimax framework is applied to vector channel decoding which consists in classifying some codewords transmitted on a binary asymmetric channel. The Hamming metric is used to measure the number of differences between the emitted codeword and the decoded one.
Complete list of metadata

Cited literature [42 references]  Display  Hide  Download
Contributor : Lionel Fillatre <>
Submitted on : Wednesday, June 21, 2017 - 9:38:33 AM
Last modification on : Monday, October 12, 2020 - 10:30:40 AM
Long-term archiving on: : Saturday, December 16, 2017 - 12:32:05 AM


Files produced by the author(s)




Lionel Fillatre. Constructive Minimax Classification of Discrete Observations with Arbitrary Loss Function. Signal Processing, Elsevier, 2017, ⟨10.1016/j.sigpro.2017.06.020⟩. ⟨hal-01543555⟩



Record views


Files downloads