Constructive Minimax Classification of Discrete Observations with Arbitrary Loss Function

Abstract : This paper develops a multihypothesis testing framework for calculating numerically the optimal minimax test with discrete observations and an arbitrary loss function. Discrete observations are common in data processing and make tractable the calculation of the minimax test. Each hypothesis is both associated to a parameter defining the distribution of the observations and to an action which describes the decision to take when the hypothesis is true. The loss function measures the gap between the parameters and the actions. The minimax test minimizes the maximum classification risk. It is the solution of a finite linear programming problem which gives the worst case classification risk and the worst case prior distribution. The minimax test equalizes the classification risks whose prior probabilities are strictly positive. The minimax framework is applied to vector channel decoding which consists in classifying some codewords transmitted on a binary asymmetric channel. The Hamming metric is used to measure the number of differences between the emitted codeword and the decoded one.
Type de document :
Article dans une revue
Signal Processing, Elsevier, 2017, 〈10.1016/j.sigpro.2017.06.020〉
Liste complète des métadonnées

Littérature citée [46 références]  Voir  Masquer  Télécharger
Contributeur : Lionel Fillatre <>
Soumis le : mercredi 21 juin 2017 - 09:38:33
Dernière modification le : mardi 18 juillet 2017 - 20:32:56


Fichiers produits par l'(les) auteur(s)




Lionel Fillatre. Constructive Minimax Classification of Discrete Observations with Arbitrary Loss Function. Signal Processing, Elsevier, 2017, 〈10.1016/j.sigpro.2017.06.020〉. 〈hal-01543555〉



Consultations de
la notice


Téléchargements du document