A Hybrid High-Order method for Kirchhoff–Love plate bending problems

Abstract : We present a novel Hybrid High-Order (HHO) discretization of fourth-order elliptic problems arising from the mechanical modeling of the bending behavior of Kirchhoff--Love plates, including the biharmonic equation as a particular case. The proposed HHO method supports arbitrary approximation orders on general polygonal meshes, and reproduces the key mechanical equilibrium relations locally inside each element. When polynomials of degree $k\ge 1$ are used as unknowns, we prove convergence in $h^{k+1}$ (with $h$ denoting, as usual, the meshsize) in an energy-like norm. A key ingredient in the proof are novel approximation results for the energy projector on local polynomial spaces. Under biharmonic regularity assumptions, a sharp estimate in $h^{k+3}$ is also derived for the $L^2$-norm of the error on the deflection. The theoretical results are supported by numerical experiments, which additionally show the robustness of the method with respect to the choice of the stabilization.
Type de document :
Article dans une revue
ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (2), pp.393-421. 〈https://www.esaim-m2an.org/articles/m2an/abs/2018/02/m2an170110/m2an170110.html〉. 〈10.1051/m2an/2017065〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01541389
Contributeur : Francesco Bonaldi <>
Soumis le : mercredi 24 janvier 2018 - 19:40:31
Dernière modification le : vendredi 7 décembre 2018 - 14:04:02
Document(s) archivé(s) le : jeudi 24 mai 2018 - 21:41:15

Fichier

hho_preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Francesco Bonaldi, Daniele Di Pietro, Giuseppe Geymonat, Françoise Krasucki. A Hybrid High-Order method for Kirchhoff–Love plate bending problems. ESAIM: Mathematical Modelling and Numerical Analysis, EDP Sciences, 2018, 52 (2), pp.393-421. 〈https://www.esaim-m2an.org/articles/m2an/abs/2018/02/m2an170110/m2an170110.html〉. 〈10.1051/m2an/2017065〉. 〈hal-01541389v3〉

Partager

Métriques

Consultations de la notice

321

Téléchargements de fichiers

40