HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Conference papers

Reproducible and Accurate Matrix Multiplication

Roman Iakymchuk 1, 2 David Defour 3 Caroline Collange 4 Stef Graillat 2
2 PEQUAN - Performance et Qualité des Algorithmes Numériques
LIP6 - Laboratoire d'Informatique de Paris 6
3 DALI - Digits, Architectures et Logiciels Informatiques
LIRMM - Laboratoire d'Informatique de Robotique et de Microélectronique de Montpellier, UPVD - Université de Perpignan Via Domitia
4 PACAP - Pushing Architecture and Compilation for Application Performance
Inria Rennes – Bretagne Atlantique , IRISA-D3 - ARCHITECTURE
Abstract : Due to non-associativity of floating-point operations and dynamic scheduling on parallel architectures, getting a bit-wise reproducible floating-point result for multiple executions of the same code on different or even similar parallel architectures is challenging. In this paper, we address the problem of reproducibility in the context of matrix multiplication and propose an algorithm that yields both reproducible and accurate results. This algorithm is composed of two main stages: a filtering stage that uses fast vectorized floating-point expansions in conjunction with error-free transformations; an accumulation stage based on Kulisch long accumulators in a high-radix carry-save representation. Finally, we provide implementations and performance results in parallel environments like GPUs.
Complete list of metadata

Cited literature [17 references]  Display  Hide  Download

Contributor : Stef Graillat Connect in order to contact the contributor
Submitted on : Thursday, May 30, 2019 - 10:11:31 AM
Last modification on : Friday, February 4, 2022 - 3:34:23 AM


Publisher files allowed on an open archive



Roman Iakymchuk, David Defour, Caroline Collange, Stef Graillat. Reproducible and Accurate Matrix Multiplication. SCAN: Scientific Computing, Computer Arithmetic and Validated Numerics, Sep 2014, Wurzburg, Germany. pp.126-137, ⟨10.1007/978-3-319-31769-4_11⟩. ⟨hal-01539180⟩



Record views


Files downloads