Poisson QMLE of Count Time Series Models

Abstract : Regularity conditions are given for the consistency of the Poisson quasi-maximum likelihood estimator of the conditional mean parameter of a count time series model. The asymptotic distribution of the estimator is studied when the parameter belongs to the interior of the parameter space and when it lies at the boundary. Tests for the significance of the parameters and for constant conditional mean are deduced. Applications to specific integer-valued autoregressive (INAR) and integer-valued generalized autoregressive conditional heteroscedasticity (INGARCH) models are considered. Numerical illustrations, Monte Carlo simulations and real data series are provided.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01533548
Contributor : Romain Boisselet <>
Submitted on : Tuesday, June 6, 2017 - 3:44:23 PM
Last modification on : Thursday, April 11, 2019 - 9:25:01 AM

Links full text

Identifiers

Collections

Citation

Ali Ahmad, Christian Francq. Poisson QMLE of Count Time Series Models. Journal of Time Series Analysis, Wiley-Blackwell, 2015, 37 (3), pp.291--314. ⟨10.1111/jtsa.12167⟩. ⟨hal-01533548⟩

Share

Metrics

Record views

101