Ontology for a voice transcription of OpenStreetMap data: the case of space apprehension by visually impaired persons

Abstract : In this paper, we propose a vocal ontology of Open-StreetMap data for the apprehension of space by visually impaired people. Indeed, the platform based on produsage gives a freedom to data producers to choose the descriptors of geocoded locations. Unfortunately , this freedom, called also folksonomy leads to complicate subsequent searches of data. We try to solve this issue in a simple but usable method to extract data from OSM databases in order to send them to visually impaired people using Text To Speech technology. We focus on how to help people suffering from visual disability to plan their itinerary, to comprehend a map by querying computer and getting information about surrounding environment in a mono-modal human-computer dialogue.
Type de document :
Communication dans un congrès
World Academy of Science, Engineering and Technology, May 2017, London, United Kingdom
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01533064
Contributeur : Said Boularouk <>
Soumis le : mardi 6 juin 2017 - 14:04:32
Dernière modification le : jeudi 15 juin 2017 - 09:09:38

Fichier

waset_Londres.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Domaine public

Identifiants

  • HAL Id : hal-01533064, version 1

Collections

Citation

Said Boularouk, Didier Josselin, Eitan Altman. Ontology for a voice transcription of OpenStreetMap data: the case of space apprehension by visually impaired persons. World Academy of Science, Engineering and Technology, May 2017, London, United Kingdom. <hal-01533064>

Partager

Métriques

Consultations de
la notice

124

Téléchargements du document

40