Asymptotic detection performance of the robust ANMF

Abstract : This paper presents two different approaches to derive the asymp-totic distributions of the robust Adaptive Normalized Matched Filter (ANMF) under both H0 and H1 hypotheses. More precisely, the ANMF has originally been derived under the assumption of partially homogenous Gaussian noise, i.e. where the variance is different between the observation under test and the set of secondary data. We propose in this work to relax the Gaussian hypothesis: we analyze the ANMF built with robust estimators, namely the M-estimators and the Tyler's estimator, under the Complex Elliptically Symmetric (CES) distributions framework. In this context, we derive two asymptotic distributions for this robust ANMF. Firstly, we combine the asymptotic properties of the robust estimators and the Gaussian-based distribution of the ANMF at finite distance. Secondly, we directly derive the asymptotic distribution of the robust ANMF.
Document type :
Conference papers
Complete list of metadatas

Cited literature [22 references]  Display  Hide  Download
Contributor : Véronique Soullier <>
Submitted on : Wednesday, May 17, 2017 - 10:35:05 AM
Last modification on : Friday, June 21, 2019 - 11:18:21 AM



Frédéric Pascal, Jean-Philippe Ovarlez. Asymptotic detection performance of the robust ANMF. 23rd European Signal Processing Conference (EUSIPCO 2015), Aug 2015, Nice, France. pp.524 - 528, ⟨10.1109/EUSIPCO.2015.7362438⟩. ⟨hal-01521934⟩



Record views