Hardware Automated Datafow Deployment of CNNs

Abstract : Deep Convolutional Neural Networks (CNNs) are the state of the art systems for image classification and scene understating. However, such techniques are computationally intensive and involve highly regular parallel computation. CNNs can thus benefit from a significant acceleration in execution time when running on fine grain programmable logic devices. As a consequence, several studies have proposed FPGA-based accelerators for CNNs. However, because of the huge amount of the required hardware resources, none of these studies directly was based on a direct mapping of the CNN computing elements onto the FPGA physical resources. In this work, we demonstrate the feasibility of this so-called direct hardware mapping approach and discuss several associated implementation issues. As a proof of concept, we introduce the haddoc2 open source tool, that is able to automatically transform a CNN description into a platform independent hardware description for FPGA implementation.
Keywords : Haddoc DHM FPGA CNN
Type de document :
Rapport
[Technical Report] Institut Pascal, Clermont Ferrand. 2017
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01519524
Contributeur : Kamel Abdelouahab <>
Soumis le : lundi 15 mai 2017 - 01:12:49
Dernière modification le : jeudi 7 février 2019 - 17:50:22
Document(s) archivé(s) le : jeudi 17 août 2017 - 00:28:30

Fichier

techReport_v2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01519524, version 2

Citation

Kamel Abdelouahab, Maxime Pelcat, Jocelyn Sérot, François Berry, Cédric Bourrasset, et al.. Hardware Automated Datafow Deployment of CNNs. [Technical Report] Institut Pascal, Clermont Ferrand. 2017. 〈hal-01519524〉

Partager

Métriques

Consultations de la notice

1063

Téléchargements de fichiers

433