Ab Initio Monte Carlo Simulations of the Acidic Dissolution of Stainless Steels: Influence of the Alloying Elements - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Journal of The Electrochemical Society Année : 2016

Ab Initio Monte Carlo Simulations of the Acidic Dissolution of Stainless Steels: Influence of the Alloying Elements

B. Malki
  • Fonction : Auteur
S. Saedlou
  • Fonction : Auteur
I. Guillotte
  • Fonction : Auteur

Résumé

Acidic dissolution of ferritic stainless steels is simulated using the ab initio based Monte Carlo technique. This approach aims to reach a better understanding of the effect of alloying elements on the acidic dissolution of SS at the microscopic scale. The dissolution probability of a surface atom is shown to depend drastically on the number and chemical nature of its nearest neighbors in dense emerging crystallographic planes. A "critical coordination number" (CCN) is defined, above which the dissolution probability is too low to contribute significantly to the dissolution rate, and below which the dissolution events are too fast to be experimentally detected. For pure alpha-Fe and FeCr alloys this CCN was found to be equal to 4. Increasing the Cr concentration does not change the CCN but decreases the interatomic bonding energy, making the dissolution process easier. The addition of Mo is found to involve multiple CCN, belonging to different crystallographic orientations, which results in a substantial decrease of the dissolution kinetics. (C) The Author(s) 2016. Published by ECS. All rights reserved.

Domaines

Matériaux
Fichier non déposé

Dates et versions

hal-01517210 , version 1 (02-05-2017)

Identifiants

Citer

B. Malki, S. Saedlou, I. Guillotte, B. Baroux. Ab Initio Monte Carlo Simulations of the Acidic Dissolution of Stainless Steels: Influence of the Alloying Elements. Journal of The Electrochemical Society, 2016, 163 (14), pp.C807 - C814. ⟨10.1149/2.0151614jes⟩. ⟨hal-01517210⟩
40 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More