Rotation invariant, Riesz bases of directional wavelets

Abstract : This article addresses the issue of designing bases for L 2 (R 2) that are generated by translations, rotations and dilations of a single mother wavelet ψ. We show how this construction can be simplified by setting an odd number of directions and by choosing properly the phase of the Fourier transform of ψ. A large part of the article is devoted to the proof of theorems that give sufficient conditions for ψ to generate a Riesz sequence and a Riesz basis for L 2 (R 2). An example of Riesz sequence whose restriction to each scale is orthonormal is set. Theoretical results are confirmed by numerical experiments where a discrete directional wavelet transform is introduced.
Type de document :
Article dans une revue
Applied and Computational Harmonic Analysis, Elsevier, 2017, 〈10.1016/j.acha.2017.04.001〉
Liste complète des métadonnées

Littérature citée [29 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01515774
Contributeur : Sylvain Durand <>
Soumis le : vendredi 28 avril 2017 - 10:30:32
Dernière modification le : jeudi 31 mai 2018 - 09:12:02
Document(s) archivé(s) le : samedi 29 juillet 2017 - 13:05:00

Fichier

RIRBDW.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Sylvain Durand. Rotation invariant, Riesz bases of directional wavelets. Applied and Computational Harmonic Analysis, Elsevier, 2017, 〈10.1016/j.acha.2017.04.001〉. 〈hal-01515774〉

Partager

Métriques

Consultations de la notice

90

Téléchargements de fichiers

47