Skip to Main content Skip to Navigation
Journal articles

The spherical p-harmonic eigenvalue problem in non-smooth domains

Abstract : We prove the existence of p-harmonic functions under the form u(r, σ) = r −β ω(σ) in any cone C S generated by a spherical domain S and vanishing on ∂C S. We prove the uniqueness of the exponent β and of the normalized function ω under a Lipschitz condition on S.
Complete list of metadatas

Cited literature [16 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01501604
Contributor : Laurent Veron <>
Submitted on : Tuesday, April 4, 2017 - 2:12:46 PM
Last modification on : Thursday, March 5, 2020 - 5:33:45 PM
Document(s) archivé(s) le : Wednesday, July 5, 2017 - 5:11:19 PM

Files

spherical $p$-harmonic-N5.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01501604, version 1
  • ARXIV : 1704.01037

Collections

Citation

Konstantinos Gkikas, Laurent Véron. The spherical p-harmonic eigenvalue problem in non-smooth domains. Journal of Functional Analysis, Elsevier, 2018, 274, pp.1155-1176. ⟨hal-01501604⟩

Share

Metrics

Record views

513

Files downloads

166