COMPARISON OF BELIEF PROPAGATION AND GRAPH-CUT APPROACHES FOR CONTEXTUAL CLASSIFICATION OF 3D LIDAR POINT CLOUD DATA

Abstract : In this paper, we focus on the classification of lidar point cloud data acquired via mobile laser scanning, whereby the classification relies on a context model based on a Conditional Random Field (CRF). We present two approximate inference algorithms based on belief propagation, as well as a graph-cut-based approach not yet applied in this context. To demonstrate the performance of our approach, we present the classification results derived for a standard benchmark dataset. These results clearly indicate that the graph-cut-based method is able to retrieve a labeling of higher likelihood in only a fraction of the time needed for the other approaches. The higher likelihood, in turn, translates into a significant gain in the accuracy of the obtained classification.
Type de document :
Communication dans un congrès
IGARSS'2017, Jul 2017, Fort Worth, Texas, United States. 2017, 〈http://www.igarss2017.org/〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01500777
Contributeur : Loic Landrieu <>
Soumis le : lundi 3 avril 2017 - 16:31:20
Dernière modification le : jeudi 6 avril 2017 - 14:51:43
Document(s) archivé(s) le : mardi 4 juillet 2017 - 13:00:20

Fichier

IGARSS2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01500777, version 1

Citation

Loic Landrieu, Clément Mallet, M Weinmann. COMPARISON OF BELIEF PROPAGATION AND GRAPH-CUT APPROACHES FOR CONTEXTUAL CLASSIFICATION OF 3D LIDAR POINT CLOUD DATA. IGARSS'2017, Jul 2017, Fort Worth, Texas, United States. 2017, 〈http://www.igarss2017.org/〉. 〈hal-01500777〉

Partager

Métriques

Consultations de la notice

196

Téléchargements de fichiers

286