Joint segmentation of multiple images with shared classes: a Bayesian nonparametrics approach

Abstract : A combination of the hierarchical Dirichlet process (HDP) and the Potts model is proposed for the joint segmentation/classification of a set of images with shared classes. Images are first divided into homogeneous regions that are assumed to belong to the same class when sharing common characteristics. Simultaneously, the Potts model favors configurations defined by neighboring pixels belonging to the same class. This HDP-Potts model is elected as a prior for the images, which allows the best number of classes to be selected automatically. A Gibbs sampler is then designed to approximate the Bayesian estimators, under a maximum a posteriori (MAP) paradigm. Preliminary experimental results are finally reported using a set of synthetic images.
Type de document :
Communication dans un congrès
IEEE Workshop on statistical signal processing (SSP 2016), Jun 2016, Palma de Mallorca, Spain. Proceedings of IEEE SSP 2016, pp. 1-5, 2016
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01500506
Contributeur : Open Archive Toulouse Archive Ouverte (oatao) <>
Soumis le : lundi 3 avril 2017 - 13:17:18
Dernière modification le : mercredi 12 septembre 2018 - 17:46:02
Document(s) archivé(s) le : mardi 4 juillet 2017 - 12:58:40

Fichier

sodjo_17065.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01500506, version 1
  • OATAO : 17065

Relations

Citation

Jessica Sodjo, Audrey Giremus, François Caron, Jean-François Giovannelli, Nicolas Dobigeon. Joint segmentation of multiple images with shared classes: a Bayesian nonparametrics approach. IEEE Workshop on statistical signal processing (SSP 2016), Jun 2016, Palma de Mallorca, Spain. Proceedings of IEEE SSP 2016, pp. 1-5, 2016. 〈hal-01500506〉

Partager

Métriques

Consultations de la notice

268

Téléchargements de fichiers

113