On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach

Abstract : This paper presents a practical application of the concept of Optimal Experiment Design (OED) for the determination of properties of porous materials with in-situ measurements and an identification method. First, an experimental set-up was presented and used for the measurement of relative humidity within a wood fibre material submitted to single and multiple steps of relative humidity variation. Then, the application of OED enabled to plan the experimental conditions in terms of sensor positioning and boundary conditions out of 20 possible designs. The OED search was performed using the Fisher information matrix and a priori knowledge of the parameters. It ensures to provide the best accuracy of the identification method and thus the estimated parameter. Optimal design results have been found for single steps from \phi = 10 to 75%, with one sensor located between 4 and 6 cm, for the estimation of moisture permeability coefficients, while from \phi = 75% to \phi = 33%, with one sensor located at X = 3 cm, for the estimation of the advection coefficient. The OED has also been applied for the identification of couples of parameters. A sample submitted to multiple relative humidity steps (\phi = 10-75-33-75%) with a sensor placed at X = 5 cm was found as the best option for determining both properties with the same experiment. These OED parameters have then been used for the determination of moisture permeability and advection coefficients. The estimated moisture permeability coefficients are twice higher than the a priori values obtained using standard methods. The advection parameter corresponds to the air velocity of the order of v = 0.01 mm/s within the material and may play an important role on the simulation of moisture front.
Liste complète des métadonnées

Contributeur : Denys Dutykh <>
Soumis le : jeudi 30 mars 2017 - 13:25:44
Dernière modification le : mardi 4 avril 2017 - 09:25:39


Fichiers produits par l'(les) auteur(s)


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License


  • HAL Id : hal-01498638, version 1



Julien Berger, Thomas Busser, Denys Dutykh, Nathan Mendes. On the estimation of moisture permeability and advection coefficients of a wood fibre material using the optimal experiment design approach. 30 pages, 12 figures, 6 tables, 43 references. Other author's papers can be downloaded at http://.. 2017. <hal-01498638>



Consultations de
la notice


Téléchargements du document