Mining Frequent Patterns in 2D+t Grid Graphs for Cellular Automata Analysis

Abstract : A 2D grid is a particular geometric graph that may be used to represent any 2D regular structure such as, for example, pixel grids, game boards, or cellular automata. Pattern mining techniques may be used to automatically extract interesting substructures from these grids. 2D+t grids are temporal sequences of grids which model the evolution of grids through time. In this paper, we show how to extend a 2D grid mining algorithm to 2D+t grids, thus allowing us to efficiently find frequent patterns in 2D+t grids. We evaluate scale-up properties of this algorithm on 2D+t grids generated by a classical cellular automaton, i.e., the game of life, and we show that the extracted spatio-temporal patterns may be used to analyze this kind of cellular automata.
Type de document :
Communication dans un congrès
Graph-Based Representations in Pattern Recognition: 11th IAPR-TC-15 International Workshop, GbRPR 2017, May 2017, Anacapri, Italy. Volume 10310, pp.177--186, 2017, Graph-Based Representations in Pattern Recognition (Part of the Lecture Notes in Computer Science book series). 〈http://gbr2017.unisa.it/〉. 〈10.1007/978-3-319-58961-9〉
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01494623
Contributeur : Romain Deville <>
Soumis le : jeudi 23 mars 2017 - 17:06:25
Dernière modification le : vendredi 10 novembre 2017 - 15:08:02
Document(s) archivé(s) le : samedi 24 juin 2017 - 15:57:27

Fichier

gbr2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Romain Deville, Elisa Fromont, Baptiste Jeudy, Christine Solnon. Mining Frequent Patterns in 2D+t Grid Graphs for Cellular Automata Analysis. Graph-Based Representations in Pattern Recognition: 11th IAPR-TC-15 International Workshop, GbRPR 2017, May 2017, Anacapri, Italy. Volume 10310, pp.177--186, 2017, Graph-Based Representations in Pattern Recognition (Part of the Lecture Notes in Computer Science book series). 〈http://gbr2017.unisa.it/〉. 〈10.1007/978-3-319-58961-9〉. 〈hal-01494623〉

Partager

Métriques

Consultations de la notice

195

Téléchargements de fichiers

64