Finite-time and finite-size scalings in the evaluation of large deviation functions: Analytical study using a birth-death process

Abstract : The Giardinà-Kurchan-Peliti algorithm is a numerical procedure that uses population dynamics in order to calculate large deviation functions associated to the distribution of time-averaged observables. To study the numerical errors of this algorithm, we explicitly devise a stochastic birth-death process that describes the time evolution of the population probability. From this formulation, we derive that systematic errors of the algorithm decrease proportionally to the inverse of the population size. Based on this observation, we propose a simple interpolation technique for the better estimation of large deviation functions. The approach we present is detailed explicitly in a two-state model.
Type de document :
Article dans une revue
Physical Review E , American Physical Society (APS), 2017, 95, pp.012102. <http://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.012102>
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01490985
Contributeur : Philippe Macé <>
Soumis le : jeudi 16 mars 2017 - 11:21:19
Dernière modification le : samedi 18 mars 2017 - 01:10:55

Identifiants

  • HAL Id : hal-01490985, version 1

Collections

INSMI | UPMC | IJM | USPC

Citation

Takahiro Nemoto, Esteban Guevara Hidalgo, Vivien Lecomte. Finite-time and finite-size scalings in the evaluation of large deviation functions: Analytical study using a birth-death process . Physical Review E , American Physical Society (APS), 2017, 95, pp.012102. <http://journals.aps.org/pre/abstract/10.1103/PhysRevE.95.012102>. <hal-01490985>

Partager

Métriques

Consultations de la notice

21