POWER SPECTRAL CLUSTERING ON HYPERSPECTRAL DATA

Abstract : Classification of remotely sensed data is an important task for many practical applications. However, it is not always possible to get the ground truth for supervised learning methods. Thus unsupervised methods form a valuable tool in such situations. Such methods are referred to as clustering methods. There exists several strategies for clustering the given data-K-means, density based methods, spectral clustering etc. Recently we proposed a novel method for clustering data-Power Spectral Clustering. In this article we aim to introduce the method in the context of Geoscience and Remote Sensing, apply the method to hyperspectral data and validate its applicability to remotely sensed images.
Type de document :
Communication dans un congrès
International Geoscience and Remote Sensing Symposium, Jul 2017, Forth Worth, United States. IEEE, 2017
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01484896
Contributeur : Aditya Challa <>
Soumis le : mercredi 8 mars 2017 - 05:30:36
Dernière modification le : mardi 10 octobre 2017 - 13:44:42
Document(s) archivé(s) le : vendredi 9 juin 2017 - 12:44:03

Fichier

PowerSpectral_IGARSS2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01484896, version 1

Collections

Citation

Aditya Challa, Sravan Danda, B S Daya Sagar, Laurent Najman. POWER SPECTRAL CLUSTERING ON HYPERSPECTRAL DATA. International Geoscience and Remote Sensing Symposium, Jul 2017, Forth Worth, United States. IEEE, 2017. 〈hal-01484896〉

Partager

Métriques

Consultations de la notice

198

Téléchargements de fichiers

72