On the cost of simulating a parallel Boolean automata network with a block-sequential one

Abstract : In this article we study the minimum number $\kappa$ of additional automata that a Boolean automata network (BAN) associated with a given block-sequential update schedule needs in order to simulate a given BAN with a parallel update schedule. We introduce a graph that we call $\GNECC$ graph built from the BAN and the update schedule. We show the relation between $\kappa$ and the chromatic number of the $\GNECC$ graph. Thanks to this $\GNECC$ graph, we bound $\kappa$ in the worst case between $n/2$ and $2n/3+2$ ($n$ being the size of the BAN simulated) and we conjecture that this number equals $n/2$. We support this conjecture with two results: the clique number of a $\GNECC$ graph is always less than or equal to $n/2$ and, for the subclass of bijective BANs, $\kappa$ is always less than or equal to $n/2+1$.
Type de document :
Communication dans un congrès
Proceedings of TAMC'17, Apr 2017, Bern, Switzerland. Springer, 10185, pp.112--128, 2017, LNCS. 〈http://tamc2017.unibe.ch/〉
Liste complète des métadonnées

Littérature citée [16 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01479439
Contributeur : Kévin Perrot <>
Soumis le : samedi 5 mai 2018 - 12:42:12
Dernière modification le : vendredi 18 mai 2018 - 14:11:56
Document(s) archivé(s) le : mardi 25 septembre 2018 - 00:12:16

Fichier

TAMC_2017_paper_39.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01479439, version 1

Citation

Florian Bridoux, Pierre Guillon, Kévin Perrot, Sylvain Sené, Guillaume Theyssier. On the cost of simulating a parallel Boolean automata network with a block-sequential one. Proceedings of TAMC'17, Apr 2017, Bern, Switzerland. Springer, 10185, pp.112--128, 2017, LNCS. 〈http://tamc2017.unibe.ch/〉. 〈hal-01479439〉

Partager

Métriques

Consultations de la notice

150

Téléchargements de fichiers

15