Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space - Archive ouverte HAL Accéder directement au contenu
Article Dans Une Revue Advances in Mechanical Engineering Année : 2016

Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space

Résumé

Traumatic spinal cord contusions lead to loss of quality of life, but their pathomechanisms are not fully understood. Previous studies have underlined the contribution of the cerebrospinal fluid in spinal cord protection. However, it remains unclear how important the contribution of the cerebrospinal fluid is relative to other factors such as the white/gray matter ratio. A finite element model of the spinal cord and surrounding morphologic features was used to investigate the spinal cord contusion mechanisms, considering subarachnoid space and white/gray matter ratio. Two vertebral segments (T6 and L1) were impacted transversely at 4.5ms-1, which demonstrated three major results: While the presence of cerebrospinal fluid plays a significant contributory role in spinal cord protection (compression percentage decreased by up to 19%), the arachnoid space variation along the spine appears to have a limited (3% compression decrease) impact; Differences in the white and gray matter geometries from lumbar to thoracic spine levels decrease spinal cord compression by up to 14% at the thoracic level ; Stress distribution in the sagittal spinal cord section was consistent with central cord syndrome, and local stress concentration on the anterior part of the spinal cord being highly reduced by the presence of cerebrospinal fluid. The use of a refined spinal cord finite element method showed that all the geometrical parameters are involved in the spinal cord contusion mechanisms. Hence, spinal cord injury criteria must be considered at each vertebral level.
Fichier principal
Vignette du fichier
tex00000135.pdf (891.95 Ko) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-01478426 , version 1 (28-02-2017)

Identifiants

Citer

Léo Fradet, Pierre-Jean Arnoux, Virginie Callot, Yvan Petit. Geometrical variations in white and gray matter affect the biomechanics of spinal cord injuries more than the arachnoid space. Advances in Mechanical Engineering, 2016, 8 (8), pp. 1-8. ⟨10.1177/1687814016664703⟩. ⟨hal-01478426⟩
72 Consultations
75 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More