The equivalence of two classical list scheduling algorithms for dependent typed tasks with release dates, due dates and precedence delays

Abstract : We consider a finite set of unit time execution tasks with release dates, due dates and precedence delays. The machines are partitionned into k classes. Each task requires one machine from a fixed class to be executed. The problem is the existence of a feasible schedule. This general problem is known to be N P-complete; many studies were devoted to the determination of polynomial time algorithms for some special subcasses, most of them based on a particular list schedule. The Garey-Johnson and Leung-Palem-Pnueli algorithms (respectively GJ and LPP in short) are both improving the due dates to build a priority list. They are modifiying them using necessary conditions until a fix point is reached. The present paper shows that these two algorithms are different implementations of a same generic one. The main consequence is that all the results valid for GJ algorithm, are also for LPP and vice versa.
Type de document :
Article dans une revue
Journal of Scheduling, Springer Verlag, 2017, pp.1-9. 〈10.1007/s10951-016-0507-8〉
Liste complète des métadonnées

Littérature citée [15 références]  Voir  Masquer  Télécharger

https://hal.sorbonne-universite.fr/hal-01472060
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : lundi 20 février 2017 - 15:03:00
Dernière modification le : samedi 15 décembre 2018 - 01:45:52
Document(s) archivé(s) le : dimanche 21 mai 2017 - 14:16:27

Fichier

Carlier_2017_The_equivalence_o...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

UPMC | LIP6 | FIND | CRDP

Citation

Aurélien Carlier, Claire Hanen, Alix Munier-Kordon. The equivalence of two classical list scheduling algorithms for dependent typed tasks with release dates, due dates and precedence delays. Journal of Scheduling, Springer Verlag, 2017, pp.1-9. 〈10.1007/s10951-016-0507-8〉. 〈hal-01472060〉

Partager

Métriques

Consultations de la notice

192

Téléchargements de fichiers

39