Skip to Main content Skip to Navigation

Stability and boundary stabilization of 1-D hyperbolic systems

Abstract : This monograph explores the modeling of conservation and balance laws of one-dimensional hyperbolic systems using partial differential equations. It presents typical examples of hyperbolic systems for a wide range of physical engineering applications, allowing readers to understand the concepts in whichever setting is most familiar to them. With these examples, it also illustrates how control boundary conditions may be defined for the most commonly used control devices. The authors begin with the simple case of systems of two linear conservation laws and then consider the stability of systems under more general boundary conditions that may be differential, nonlinear, or switching. They then extend their discussion to the case of nonlinear conservation laws and demonstrate the use of Lyapunov functions in this type of analysis. Systems of balance laws are considered next, starting with the linear variety before they move on to more general cases of nonlinear ones. They go on to show how the problem of boundary stabilization of systems of two balance laws by both full-state and dynamic output feedback in observer-controller form is solved by using a “backstepping” method, in which the gains of the feedback laws are solutions of an associated system of linear hyperbolic PDEs. The final chapter presents a case study on the control of navigable rivers to emphasize the main technological features that may occur in real live applications of boundary feedback control. Stability and Boundary Stabilization of 1-D Hyperbolic Systems will be of interest to graduate students and researchers in applied mathematics and control engineering. The wide range of applications it discusses will help it to have as broad an appeal within these groups as possible.
Document type :
Complete list of metadata
Contributor : Jean-Michel Coron <>
Submitted on : Monday, January 30, 2017 - 3:04:36 PM
Last modification on : Saturday, March 28, 2020 - 2:21:27 AM



Georges Bastin, Jean-Michel Coron. Stability and boundary stabilization of 1-D hyperbolic systems. Birkhäuser. 88, 2016, Progress in Nonlinear Differential Equations and their Applications, 978-3-319-32060-1. ⟨10.1007/978-3-319-32062-5⟩. ⟨hal-01449504⟩



Record views