HJB equations in infinite dimension and optimal control of stochastic evolution equations via generalized Fukushima decomposition

Abstract : A stochastic optimal control problem driven by an abstract evolution equation in a separable Hilbert space is considered. Thanks to the identification of the mild solution of the state equation as $\nu$-weak Dirichlet process, the value processes is proved to be a real weak Dirichlet process. The uniqueness of the corresponding decomposition is used to prove a verification theorem. Through that technique several of the required assumptions are milder than those employed in previous contributions about non-regular solutions of Hamilton-Jacobi-Bellman equations.
Type de document :
Article dans une revue
SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2017, 55 (6), pp.4072-4091
Liste complète des métadonnées

Littérature citée [42 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01447562
Contributeur : Francesco Russo <>
Soumis le : jeudi 17 août 2017 - 09:33:13
Dernière modification le : lundi 24 septembre 2018 - 12:45:58

Fichiers

FabbriRussoAugust2017SFB.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01447562, version 2

Citation

Giorgio Fabbri, Francesco Russo. HJB equations in infinite dimension and optimal control of stochastic evolution equations via generalized Fukushima decomposition. SIAM Journal on Control and Optimization, Society for Industrial and Applied Mathematics, 2017, 55 (6), pp.4072-4091. 〈hal-01447562v2〉

Partager

Métriques

Consultations de la notice

292

Téléchargements de fichiers

91