On the erdös flat polynomials problem, chowla conjecture and riemann hypothesis

Abstract : There are no square L 2-flat sequences of polynomials of the type 1 √ q (ǫ 0 + ǫ 1 z + ǫ 2 z 2 + · · · + ǫ q−2 z q−2 + ǫqz q−1), where for each j, 0 ≤ j ≤ q −1, ǫ j = ±1. It follows that Erdös's conjectures on Littlewood polynomials hold. Consequently, Turyn-Golay's conjecture is true, that is, there are only finitely many Barker sequences. We further get that the spectrum of dynamical systems arising from continuous Morse sequences is singular. This settles an old question due to M. Keane. Applying our reasoning to the Liouville function we obtain that the popular Chowla conjecture on the normality of the Liouville function implies Riemann hypothesis.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01430637
Contributor : El Houcein El Abdalaoui <>
Submitted on : Tuesday, January 10, 2017 - 10:19:05 AM
Last modification on : Tuesday, February 5, 2019 - 11:44:10 AM
Document(s) archivé(s) le : Tuesday, April 11, 2017 - 1:58:18 PM

Files

Erdos-flat-poly-ChowlaC-RH-V3-...
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01430637, version 1

Citation

El Houcein El Abdalaoui. On the erdös flat polynomials problem, chowla conjecture and riemann hypothesis. 2017. ⟨hal-01430637v1⟩

Share

Metrics

Record views

95

Files downloads

18