Unsupervised Exceptional Attributed Sub-graph Mining in Urban Data

Anes Bendimerad 1 Marc Plantevit 1 Céline Robardet
1 DM2L - Data Mining and Machine Learning
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : Geo-located social media provide a wealth of information that describes urban areas based on user descriptions and comments. Such data makes possible to identify meaningful city neighborhoods on the basis of the footprints left by a large and diverse population that uses this type of media. In this paper, we present some methods to exhibit the predominant activities and their associated urban areas to automatically describe a whole city. Based on a suitable attributed graph model, our approach identifies neighborhoods with homogeneous and exceptional characteristics. We introduce the novel problem of exceptional sub-graph mining in attributed graphs and propose a complete algorithm that takes benefits from new upper bounds and pruning properties. We also propose an approach to sample the space of exceptional sub-graphs within a given time-budget. Experiments performed on 10 real datasets are reported and demonstrate the relevancy and the limits of both approaches.
Type de document :
Communication dans un congrès
Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, Xindong Wu. IEEE International Conference on Data Mining (ICDM 2016), Dec 2016, Barcelone, Spain. IEEE International Conference on Data Mining, 2016, 〈http://icdm2016.eurecat.org/〉
Liste complète des métadonnées

Littérature citée [22 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01430622
Contributeur : Anes Bendimerad <>
Soumis le : mardi 10 janvier 2017 - 10:10:50
Dernière modification le : jeudi 19 avril 2018 - 14:38:06
Document(s) archivé(s) le : mardi 11 avril 2017 - 13:55:15

Fichier

Exceptional subgraph mining.pd...
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01430622, version 1

Citation

Anes Bendimerad, Marc Plantevit, Céline Robardet. Unsupervised Exceptional Attributed Sub-graph Mining in Urban Data. Francesco Bonchi, Josep Domingo-Ferrer, Ricardo Baeza-Yates, Zhi-Hua Zhou, Xindong Wu. IEEE International Conference on Data Mining (ICDM 2016), Dec 2016, Barcelone, Spain. IEEE International Conference on Data Mining, 2016, 〈http://icdm2016.eurecat.org/〉. 〈hal-01430622〉

Partager

Métriques

Consultations de la notice

308

Téléchargements de fichiers

302