The Effect of Disorder on the Free-Energy for the Random Walk Pinning Model: Smoothing of the Phase Transition and Low Temperature Asymptotics

Abstract : We consider the continuous time version of the Random Walk Pinning Model (RWPM), studied in [5, 6, 7]. Given a fixed realization of a random walk Y on Z^d with jump rate ρ (that plays the role of the random medium), we modify the law of a random walk X on Z^d with jump rate 1 by reweighting the paths, giving an energy reward proportional to the intersection time L_t(X, Y) = \int_0^t 1_{X_s =Y_s} ds: the weight of the path under the new measure is exp(β L_t(X, Y)), β ∈ R. As β increases, the system exhibits a delocalization/localization transition: there is a critical value βc, such that if β > βc the two walks stick together for almost-all Y realizations. A natural question is that of disorder relevance, that is whether the quenched and annealed systems have the same behavior. In this paper we investigate how the disorder modifies the shape of the free energy curve: (1) We prove that, in dimension d≥3, the presence of disorder makes the phase transition at least of second order. This, in dimension d≥4, contrasts with the fact that the phase transition of the annealed system is of first order. (2) In any dimension, we prove that disorder modifies the low temperature asymptotic of the free energy.
Type de document :
Article dans une revue
Journal of Statistical Physics, Springer Verlag, 2011, 142, pp.322-341. 〈10.1007/s10955-010-0110-x〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01426338
Contributeur : Quentin Berger <>
Soumis le : mercredi 4 janvier 2017 - 13:50:21
Dernière modification le : lundi 29 mai 2017 - 14:26:12
Document(s) archivé(s) le : mercredi 5 avril 2017 - 13:56:14

Fichier

smooth2807.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Quentin Berger, Hubert Lacoin. The Effect of Disorder on the Free-Energy for the Random Walk Pinning Model: Smoothing of the Phase Transition and Low Temperature Asymptotics. Journal of Statistical Physics, Springer Verlag, 2011, 142, pp.322-341. 〈10.1007/s10955-010-0110-x〉. 〈hal-01426338〉

Partager

Métriques

Consultations de
la notice

125

Téléchargements du document

31