A block parallel majorize-minimize memory gradient algorithm

Abstract : In the field of 3D image recovery, huge amounts of data need to be processed. Parallel optimization methods are then of main interest since they allow to overcome memory limitation issues, while benefiting from the intrinsic acceleration provided by recent multicore computing architectures. In this context, we propose a Block Parallel Majorize-Minimize Memory Gradient (BP3MG) algorithm for solving large scale optimization problems. This algorithm combines a block coordinate strategy with an efficient parallel update. The proposed method is applied to a 3D microscopy image restoration problem involving a depth-variant blur, where it is shown to lead to significant computational time savings with respect to a sequential approach.
Type de document :
Communication dans un congrès
IEEE International Conference on Image Processing (ICIP 2016), Sep 2016, Phoenix, AZ, United States. 2016 IEEE International Conference on Image Processing (ICIP), pp.3194 - 3198, 2016, 〈10.1109/ICIP.2016.7532949〉
Liste complète des métadonnées

Littérature citée [20 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01418417
Contributeur : Emilie Chouzenoux <>
Soumis le : vendredi 16 décembre 2016 - 16:55:11
Dernière modification le : samedi 18 février 2017 - 01:14:38
Document(s) archivé(s) le : lundi 27 mars 2017 - 23:50:15

Fichier

icip2016.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Domaine public

Identifiants

Citation

Sara Cadoni, Emilie Chouzenoux, Jean-Christophe Pesquet, Caroline Chaux. A block parallel majorize-minimize memory gradient algorithm. IEEE International Conference on Image Processing (ICIP 2016), Sep 2016, Phoenix, AZ, United States. 2016 IEEE International Conference on Image Processing (ICIP), pp.3194 - 3198, 2016, 〈10.1109/ICIP.2016.7532949〉. 〈hal-01418417〉

Partager

Métriques

Consultations de
la notice

481

Téléchargements du document

69