Spectral multiplier theorems via $H^\infty$ calculus and $R$-bounds

Christoph Kriegler 1 Lutz Weis 2
2 Fakultät für Mathematik, KIT, Allemagne
Institut für Algebra und Geometrie / Institute for Algebra and Geometry
Abstract : We prove spectral multiplier theorems for H\"ormander classes $\mathcal{H}^\alpha_p$ for 0-sectorial operators A on Banach spaces assuming a bounded $H^\infty(\Sigma_\sigma)$ calculus for some $\sigma \in (0,\pi)$ and norm and certain R-bounds on one of the following families of operators: the semigroup $e^{−zA}$ on $\mathbb{C}_+$, the wave operators $e^{isA}$ for $s \in \mathbb{R}$, the resolvent $(\lambda − A)^{-1}$ on $\mathbb{C} \backslash \mathbb{R}$, the imaginary powers $A^{it}$ for $t \in \mathbb{R}$ or the Bochner-Riesz means $(1-A/u)^\alpha_+$ for $u > 0.$ In contrast to the existing literature we neither assume that A operates on an Lp scale nor that A is self-adjoint on a Hilbert space. Furthermore, we replace (generalized) Gaussian or Poisson bounds and maximal estimates by the weaker notion of R-bounds, which allow for a unified approach to spectral multiplier theorems in a more general setting. In this setting our results are close to being optimal. Moreover, we can give a characterization of the (R-bounded) $\mathcal{H}^\alpha_1$ calculus in terms of R-boundedness of Bochner-Riesz means.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [31 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01415399
Contributeur : Christoph Kriegler <>
Soumis le : mardi 13 décembre 2016 - 10:18:00
Dernière modification le : mercredi 14 décembre 2016 - 01:08:46
Document(s) archivé(s) le : mardi 14 mars 2017 - 12:22:06

Fichiers

Hormander.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01415399, version 1
  • ARXIV : 1612.04142

Collections

Citation

Christoph Kriegler, Lutz Weis. Spectral multiplier theorems via $H^\infty$ calculus and $R$-bounds. 2016. 〈hal-01415399〉

Partager

Métriques

Consultations de
la notice

88

Téléchargements du document

45