Skip to Main content Skip to Navigation
Conference papers

Empirical comparisons of several derivative free optimization algorithms

Anne Auger 1, 2 Nikolaus Hansen 2, 1 Jorge Perez Zerpa 2 Raymond Ros 2 Marc Schoenauer 2, 1
2 TAO - Machine Learning and Optimisation
CNRS - Centre National de la Recherche Scientifique : UMR8623, Inria Saclay - Ile de France, UP11 - Université Paris-Sud - Paris 11, LRI - Laboratoire de Recherche en Informatique
Abstract : In this paper, the performances of the quasi-Newton BFGS algorithm, the NEWUOA derivative free optimization algorithm, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES), the Differential Evolution (DE) algorithm and a Particle Swarm Optimization (PSO) algorithm are compared experimentally on benchmark functions reflecting important challenges encountered in real-world optimization problems. Dependence of the performances in the conditioning of the problem and rotational invariance of the algorithms are in particular investigated.
Document type :
Conference papers
Complete list of metadata

Cited literature [15 references]  Display  Hide  Download
Contributor : Mathias Legrand <>
Submitted on : Sunday, December 4, 2016 - 6:49:27 PM
Last modification on : Monday, November 16, 2020 - 8:38:05 AM
Long-term archiving on: : Monday, March 20, 2017 - 5:00:15 PM


Files produced by the author(s)


Distributed under a Creative Commons Attribution 4.0 International License


  • HAL Id : hal-01408402, version 1



Anne Auger, Nikolaus Hansen, Jorge Perez Zerpa, Raymond Ros, Marc Schoenauer. Empirical comparisons of several derivative free optimization algorithms. 9e Colloque national en calcul des structures, CSMA, May 2009, Giens, France. ⟨hal-01408402⟩



Record views


Files downloads