A Bayesian nonparametric approach to ecological risk assessment

Abstract : We revisit a classical method for ecological risk assessment, the Species Sensitivity Distribution (SSD) approach, in a Bayesian nonparamet-ric framework. SSD is a mandatory diagnostic required by environmental regulatory bodies from the European Union, the United States, Australia, China etc. Yet, it is subject to much scientific criticism, notably concerning a historically debated parametric assumption for modelling species variability. Tackling the problem using nonparametric mixture models, it is possible to shed this parametric assumption and build a statistically sounder basis for SSD. We use Normalized Random Measures with Independent Increments (NRMI) as the mixing measure because they offer a greater flexibility than the Dirichlet process. Indeed, NRMI can induce a prior on the number of components in the mixture model that is less informative than the Dirichlet process. This feature is consistent with the fact that SSD practitioners do not usually have a strong prior belief on the number of components. In this short paper, we illustrate the advantage of the nonparametric SSD over the classical normal SSD and a kernel density estimate SSD on several real datasets. We summarise the results of the complete study in Kon Kam King et al. (2016), where the method is generalised to censored data and a systematic comparison on simulated data is also presented, along with a study of the clustering induced by the mixture model to examine patterns in species sensitivity.
Type de document :
Chapitre d'ouvrage
Argiento, R.; Lanzarone, E.; Antoniano Villalobos, I.; Mattei, A. Bayesian Statistics in Action, 194, pp.151--159, 2017, Bayesian Statistics in Action, 〈http://web.mi.imati.cnr.it/conferences/BAYSM2016/〉
Liste complète des métadonnées

Littérature citée [32 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01405593
Contributeur : Julyan Arbel <>
Soumis le : mercredi 30 novembre 2016 - 11:01:34
Dernière modification le : mercredi 11 avril 2018 - 01:58:39
Document(s) archivé(s) le : lundi 27 mars 2017 - 08:37:29

Fichier

baysm_SSD_post_review.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01405593, version 1

Collections

Citation

Guillaume Kon Kam King, Julyan Arbel, Igor Prünster. A Bayesian nonparametric approach to ecological risk assessment. Argiento, R.; Lanzarone, E.; Antoniano Villalobos, I.; Mattei, A. Bayesian Statistics in Action, 194, pp.151--159, 2017, Bayesian Statistics in Action, 〈http://web.mi.imati.cnr.it/conferences/BAYSM2016/〉. 〈hal-01405593〉

Partager

Métriques

Consultations de la notice

471

Téléchargements de fichiers

163