Complexity and Optimality of the Best Response Algorithm in Random Potential Games

Stéphane Durand 1, 2 Bruno Gaujal 2
1 NECS - Networked Controlled Systems
Inria Grenoble - Rhône-Alpes, GIPSA-DA - Département Automatique
2 POLARIS - Performance analysis and optimization of LARge Infrastructures and Systems
Inria Grenoble - Rhône-Alpes, LIG - Laboratoire d'Informatique de Grenoble
Abstract : In this paper we compute the worst-case and average execution time of the Best Response Algorithm (BRA) to compute a pure Nash equilibrium in finite potential games. Our approach is based on a Markov chain model of BRA and a coupling technique that transform the average execution time of this discrete algorithm into the solution of an ordinary differential equation. In a potential game with N players and A strategies per player, we show that the worst case complexity of BRA (number of moves) is exactly N A N −1 , while its average complexity over random potential games is equal to e γ N + O(N), where γ is the Euler constant. We also show that the effective number of states visited by BRA is equal to log N + c + O(1/N) (with c e γ), on average. Finally , we show that BRA computes a pure Nash Equilibrium faster (in the strong stochastic order sense) than any local search algorithm over random potential games.
Type de document :
Communication dans un congrès
Symposium on Algorithmic Game Theory (SAGT) 2016, Sep 2016, Liverpool, United Kingdom. pp.40-51, 2016, 〈http://sagt16.csc.liv.ac.uk/〉. 〈10.1007/978-3-662-53354-3_4〉
Liste complète des métadonnées

Littérature citée [19 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01404643
Contributeur : Stephane Durand <>
Soumis le : mardi 29 novembre 2016 - 09:51:26
Dernière modification le : samedi 11 février 2017 - 01:05:59
Document(s) archivé(s) le : lundi 27 mars 2017 - 09:09:25

Fichier

sagtFinalVersion2.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Stéphane Durand, Bruno Gaujal. Complexity and Optimality of the Best Response Algorithm in Random Potential Games. Symposium on Algorithmic Game Theory (SAGT) 2016, Sep 2016, Liverpool, United Kingdom. pp.40-51, 2016, 〈http://sagt16.csc.liv.ac.uk/〉. 〈10.1007/978-3-662-53354-3_4〉. 〈hal-01404643〉

Partager

Métriques

Consultations de
la notice

239

Téléchargements du document

98