Skip to Main content Skip to Navigation
Book sections

Sums of the digits in bases 2 and 3

Abstract : Let b ≥ 2 be an integer and let s b (n) denote the sum of the digits of the representation of an integer n in base b. For sufficiently large N , one has Card{n ≤ N : |s 3 (n) − s 2 (n)| ≤ 0.1457205 log n} > N 0.970359. The proof only uses the separate (or marginal) distributions of the values of s 2 (n) and s 3 (n).
Complete list of metadatas

Cited literature [6 references]  Display  Hide  Download

https://hal.archives-ouvertes.fr/hal-01401869
Contributor : Laurent Habsieger <>
Submitted on : Wednesday, November 23, 2016 - 9:18:04 PM
Last modification on : Monday, March 9, 2020 - 6:15:58 PM
Document(s) archivé(s) le : Tuesday, March 21, 2017 - 4:56:08 AM

Files

s3-s2_Tichy_2016-10.18.pdf
Files produced by the author(s)

Identifiers

  • HAL Id : hal-01401869, version 1
  • ARXIV : 1611.08180

Citation

Jean-Marc Deshouillers, Laurent Habsieger, Shanta Laishram, Bernard Landreau. Sums of the digits in bases 2 and 3. Number theory—Diophantine problems, uniform distribution and applications, Springer, pp.211-217, 2017. ⟨hal-01401869⟩

Share

Metrics

Record views

342

Files downloads

78