A Multi-context BDI Recommender System: from Theory to Simulation

Abstract : In this paper, a simulation of a multi-agent recommender system is presented and developed in the NetLogo platform. The specification of this recommender system is based on the well known Belief-Desire-Intention agent architecture applied to multi-context systems, extended with contexts for additional reasoning abilities, especially social ones. The main goal of this simulation study is, besides illustrating the usefulness and feasibility of our agent-based recommender system in a realistic scenario, to understand how groups of agents behave in a social network compared to individual agents. Results show that agents within a social network have better collective performance than individual ones. The utility and the satisfaction of agents is increased by the exchange of messages when executing intentions
Type de document :
Communication dans un congrès
Web Intelligence, Oct 2016, Omaha, United States. 2016, 2016 IEEE/WIC/ACM International Conference on Web Intelligence. 〈http://wibih.unomaha.edu/wi〉. 〈10.1109/WI.2016.0104〉
Liste complète des métadonnées

Littérature citée [13 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01400997
Contributeur : Amel Ben Othmane <>
Soumis le : jeudi 1 juin 2017 - 10:44:37
Dernière modification le : vendredi 2 juin 2017 - 01:11:40
Document(s) archivé(s) le : mercredi 6 septembre 2017 - 18:32:35

Fichier

Web_Intelligence_2016.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Amel Ben Othmane, Andrea G. B. Tettamanzi, Serena Villata, Nhan Le Thanh. A Multi-context BDI Recommender System: from Theory to Simulation. Web Intelligence, Oct 2016, Omaha, United States. 2016, 2016 IEEE/WIC/ACM International Conference on Web Intelligence. 〈http://wibih.unomaha.edu/wi〉. 〈10.1109/WI.2016.0104〉. 〈hal-01400997〉

Partager

Métriques

Consultations de la notice

509

Téléchargements de fichiers

42