Limit theorems for weighted and regular Multilevel estimators

Abstract : We aim at analyzing in terms of a.s. convergence and weak rate the performances of the Multilevel Monte Carlo estimator (MLMC) introduced in [Gil08] and of its weighted version, the Multilevel Richardson Romberg estimator (ML2R), introduced in [LP14]. These two estimators permit to compute a very accurate approximation of $I_0 = \mathbb{E}[Y_0]$ by a Monte Carlo type estimator when the (non-degenerate) random variable $Y_0 \in L^2(\mathbb{P})$ cannot be simulated (exactly) at a reasonable computational cost whereas a family of simulatable approximations $(Y_h)_{h \in \mathcal{H}}$ is available. We will carry out these investigations in an abstract framework before applying our results, mainly a Strong Law of Large Numbers and a Central Limit Theorem, to some typical fields of applications: discretization schemes of diffusions and nested Monte Carlo.
Type de document :
Article dans une revue
Monte Carlo Methods and Applications, De Gruyter, 2017, 23 (1), pp.43. 〈https://www.degruyter.com/〉. 〈10.1515/mcma-2017-0102〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01398292
Contributeur : Vincent Lemaire <>
Soumis le : jeudi 17 novembre 2016 - 09:01:47
Dernière modification le : vendredi 4 janvier 2019 - 17:32:34

Lien texte intégral

Identifiants

Citation

Daphné Giorgi, Vincent Lemaire, Gilles Pagès. Limit theorems for weighted and regular Multilevel estimators. Monte Carlo Methods and Applications, De Gruyter, 2017, 23 (1), pp.43. 〈https://www.degruyter.com/〉. 〈10.1515/mcma-2017-0102〉. 〈hal-01398292〉

Partager

Métriques

Consultations de la notice

229