Extension of the Günter derivatives to Lipschitz domains and application to the boundary potentials of elastic waves

Abstract : The scalar Günter derivatives of a function defined on the boundary of a three-dimensional domain are expressed as components (or their opposites) of the tangential vector rotational of this function in the canonical orthonormal basis of the ambient space. This in particular implies that these derivatives define bounded operators from H s into H s−1 for 0 ≤ s ≤ 1 on the boundary of a Lipschitz domain, and can easily be implemented in boundary element codes. Regularization techniques for the trace and the traction of elastic waves potentials, previously built for a domain of class C 2 , can thus be extended to the Lipschitz case. In particular, this yields an elementary way to establish the mapping properties of elastic wave potentials from those of the Helmholtz equation without resorting to the more advanced theory for elliptic systems. Some attention is finally paid to the two-dimensional case.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

Littérature citée [24 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01395952
Contributeur : Bendali Abderrahmane <>
Soumis le : lundi 14 novembre 2016 - 12:33:54
Dernière modification le : mardi 5 mars 2019 - 11:28:05
Document(s) archivé(s) le : jeudi 16 mars 2017 - 11:53:48

Fichiers

jmpa-hal.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01395952, version 1
  • ARXIV : 1611.04362

Citation

Abderrahmane Bendali, Sébastien Tordeux. Extension of the Günter derivatives to Lipschitz domains and application to the boundary potentials of elastic waves. 2016. 〈hal-01395952〉

Partager

Métriques

Consultations de la notice

429

Téléchargements de fichiers

246