Finding remarkably dense sequences of contacts in link streams

Noe Gaumont 1, * Clémence Magnien 1 Matthieu Latapy 1
* Auteur correspondant
1 ComplexNetworks
LIP6 - Laboratoire d'Informatique de Paris 6
Abstract : A link stream is a set of quadruplets (b, e, u, v) meaning that a link exists between u and v from time b to time e. Link streams model many real-world situations like contacts between individuals, connections between devices, and others. Much work is currently devoted to the generalization of classical graph and network concepts to link streams. We argue that the density is a valuable notion for understanding and characterizing links streams. We propose a method to capture specific groups of links that are structurally and temporally densely connected and show that they are meaningful for the description of link streams. To find such groups, we use classical graph community detection algorithms, and we assess obtained groups. We apply our method to several real-world contact traces (captured by sensors) and demonstrate the relevance of the obtained structures.
Type de document :
Article dans une revue
Social Network Analysis and Mining, Springer, 2016, 6 (1), pp.87. 〈10.1007/s13278-016-0396-z〉
Liste complète des métadonnées

Littérature citée [27 références]  Voir  Masquer  Télécharger

http://hal.upmc.fr/hal-01390043
Contributeur : Gestionnaire Hal-Upmc <>
Soumis le : lundi 31 octobre 2016 - 14:12:30
Dernière modification le : mercredi 21 mars 2018 - 18:57:58

Fichier

Gaumont_2016_Finding_remarkabl...
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Noe Gaumont, Clémence Magnien, Matthieu Latapy. Finding remarkably dense sequences of contacts in link streams. Social Network Analysis and Mining, Springer, 2016, 6 (1), pp.87. 〈10.1007/s13278-016-0396-z〉. 〈hal-01390043〉

Partager

Métriques

Consultations de la notice

153

Téléchargements de fichiers

26