On weakly singular and fully nonlinear travelling shallow capillary-gravity waves in the critical regime

Abstract : In this Letter we consider long capillary-gravity waves described by a fully nonlinear weakly dispersive model. First, using the phase space analysis methods we describe all possible types of localized travelling waves. Then, we especially focus on the critical regime, where the surface tension is exactly balanced by the gravity force. We show that our long wave model with a critical Bond number admits stable travelling wave solutions with a singular crest. These solutions are usually referred to in the literature as peakons or peaked solitary waves. They satisfy the usual speed-amplitude relation, which coincides with Scott-Russel's empirical formula for solitary waves, while their decay rate is the same regardless their amplitude. Moreover, they can be of depression or elevation type independent of their speed. The dynamics of these solutions are studied as well.
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01388481
Contributeur : Denys Dutykh <>
Soumis le : samedi 25 mars 2017 - 14:42:24
Dernière modification le : samedi 8 avril 2017 - 11:04:51

Fichiers

DM-DD-SerrePeakon-2017.pdf
Fichiers produits par l'(les) auteur(s)

Licence


Distributed under a Creative Commons Paternité - Pas d'utilisation commerciale - Partage selon les Conditions Initiales 4.0 International License

Identifiants

Collections

Citation

Dimitrios Mitsotakis, Denys Dutykh, Aydar Assylbekuly, Dauren Zhakebayev. On weakly singular and fully nonlinear travelling shallow capillary-gravity waves in the critical regime. Physics Letters A, Elsevier, 2017, 381 (20), pp.1719-1726. <http://www.sciencedirect.com/science/article/pii/S0375960116316413>. <10.1016/j.physleta.2017.03.041>. <hal-01388481v3>

Partager

Métriques

Consultations de
la notice

192

Téléchargements du document

11