Learning from Essential Facial Parts and Local Features for Automatic Facial Expression Recognition

Yi Ji 1 Khalid Idrissi 1
1 imagine - Extraction de Caractéristiques et Identification
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information
Abstract : In this paper, we develop an automatic facial expression recognition system which establishes relations between facial expressions and the facial parts changes. Here, the differences between neutral and emotional states are used to help locating and identifying the essential facial parts for human expressions. For face description, region-based method to compute LBP features is applied then the most important ones for each expression are selected. As the system combines LBP and Gabor features, it can recognize the facial expressions efficiently. The method is evaluated on JAFFE and Cohen-Kanade database and it performs better and is more stable than other automatic or manual annotated systems.
Type de document :
Communication dans un congrès
CBMI, 8th International Workshop on Content-Based Multimedia Indexing , Jun 2010, Grenoble, France. IEEE, pp.1-6, 2010, 〈10.1109/CBMI.2010.5529888〉
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01381468
Contributeur : Équipe Gestionnaire Des Publications Si Liris <>
Soumis le : vendredi 14 octobre 2016 - 14:46:19
Dernière modification le : jeudi 19 avril 2018 - 14:38:06

Identifiants

Citation

Yi Ji, Khalid Idrissi. Learning from Essential Facial Parts and Local Features for Automatic Facial Expression Recognition. CBMI, 8th International Workshop on Content-Based Multimedia Indexing , Jun 2010, Grenoble, France. IEEE, pp.1-6, 2010, 〈10.1109/CBMI.2010.5529888〉. 〈hal-01381468〉

Partager

Métriques

Consultations de la notice

125