Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators

Abstract : We investigate the asymptotic behavior of a stochastic version of the forward-backward splitting algorithm for finding a zero of the sum of a maximally monotone set-valued operator and a cocoercive operator in Hilbert spaces. Our general setting features stochastic approximations of the cocoercive operator and stochastic perturbations in the evaluation of the resolvents of the set-valued operator. In addition, relaxations and not necessarily vanishing proximal parameters are allowed. Weak and strong almost sure convergence properties of the iterates is established under mild conditions on the underlying stochastic processes. Leveraging these results, we also establish the almost sure convergence of the iterates of a stochastic variant of a primal-dual proximal splitting method for composite minimization problems.
Document type :
Journal articles
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01380000
Contributor : Emilie Chouzenoux <>
Submitted on : Wednesday, October 12, 2016 - 12:27:29 PM
Last modification on : Thursday, April 4, 2019 - 1:29:26 AM

Identifiers

  • HAL Id : hal-01380000, version 1

Citation

Patrick Louis Combettes, Jean-Christophe Pesquet. Stochastic Approximations and Perturbations in Forward-Backward Splitting for Monotone Operators. Pure and Applied Functional Analysis, 2016, 1 (1), pp.13-37. ⟨http://www.ybook.co.jp/online2/oppafa/vol1/p13.html⟩. ⟨hal-01380000⟩

Share

Metrics

Record views

330