Classically-controlled Quantum Computation

Abstract : It is reasonable to assume that quantum computations take place under the control of the classical world. For modelling this standard situation, we introduce a Classically-controlled Quantum Turing Machine (CQTM) which is a Turing machine with a quantum tape for acting on quantum data, and a classical transition function for a formalized classical control. In CQTM, unitary transformations and quantum measurements are allowed. We show that any classical Turing machine is simulated by a CQTM without loss of efficiency. Furthermore, we show that any k-tape CQTM is simulated by a 2-tape CQTM with a quadratic loss of efficiency. The gap between classical and quantum computations which was already pointed out in the framework of measurement-based quantum computation (see [S. Perdrix, Ph. Jorrand, Measurement-Based Quantum Turing Machines and their Universality, arXiv, quant-ph/0404146, 2004]) is confirmed in the general case of classically-controlled quantum computation. In order to appreciate the similarity between programming classical Turing machines and programming CQTM, some examples of CQTM will be given in the full version of the paper. Proofs of lemmas and theorems are omitted in this extended abstract.
Document type :
Conference papers
Complete list of metadatas
Contributor : Simon Perdrix <>
Submitted on : Monday, October 10, 2016 - 5:03:07 PM
Last modification on : Thursday, January 11, 2018 - 6:27:34 AM

Links full text





Simon Perdrix, Philippe Jorrand. Classically-controlled Quantum Computation. DCM'05, 2005, Lisbon, Portugal. pp.119 - 128, ⟨10.1016/j.entcs.2005.09.026⟩. ⟨hal-01378754⟩



Record views