Perfectly matched layers for convex truncated domains with discontinuous Galerkin time domain simulations

Axel Modave 1, 2 Jonathan Lambrechts 3 Christophe Geuzaine 4
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : This paper deals with the design of perfectly matched layers (PMLs) for transient acoustic wave propagation in generally-shaped convex truncated domains. After reviewing key elements to derive PML equations for such domains, we present two time-dependent formulations for the pressure-velocity system. These formulations are obtained by using a complex coordinate stretching of the time-harmonic version of the equations in a specific curvilinear coordinate system. The final PML equations are written in a general tensor form, which can easily be projected in Cartesian coordinates to facilitate implementation with classical discretization methods. Discontinuous Galerkin finite element schemes are proposed for both formulations. They are tested and compared using a three-dimensional benchmark with an ellipsoidal truncated domain. Our approach can be generalized to domains with corners.
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01378501
Contributeur : Axel Modave <>
Soumis le : vendredi 20 janvier 2017 - 12:40:53
Dernière modification le : jeudi 15 juin 2017 - 09:09:04
Document(s) archivé(s) le : vendredi 21 avril 2017 - 14:24:00

Fichier

PreprintPMLconvex_FINAL.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Axel Modave, Jonathan Lambrechts, Christophe Geuzaine. Perfectly matched layers for convex truncated domains with discontinuous Galerkin time domain simulations. Computers & Mathematics with Applications, Elsevier, 2017, <10.1016/j.camwa.2016.12.027>. <hal-01378501v2>

Partager

Métriques

Consultations de
la notice

168

Téléchargements du document

64