Determinism and Computational Power of Real Measurement-based Quantum Computation

Simon Perdrix 1, 2, 3 Luc Sanselme 4, 3
Abstract : Measurement-based quantum computing (MBQC) is a universal model for quantum computation. The combinatorial characterisation of determinism in this model, powered by measurements, and hence, fundamentally probabilistic, is the cornerstone of most of the breakthrough results in this field. The most general known sufficient condition for a deterministic MBQC to be driven is that the underlying graph of the computation has a particular kind of flow called Pauli flow. The necessity of the Pauli flow was an open question. We show that the Pauli flow is necessary for real-MBQC, and not in general providing counterexamples for (complex) MBQC. We explore the consequences of this result for real MBQC and its applications. Real MBQC and more generally real quantum computing is known to be universal for quantum computing. Real MBQC has been used for interactive proofs by McKague. The two-prover case corresponds to real-MBQC on bipartite graphs. While (complex) MBQC on bipartite graphs are universal, the universality of real MBQC on bipartite graphs was an open question. We show that real bipartite MBQC is not universal proving that all measurements of real bipartite MBQC can be parallelised leading to constant depth computations. As a consequence, McKague techniques cannot lead to two-prover interactive proofs.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01377339
Contributeur : Simon Perdrix <>
Soumis le : lundi 10 octobre 2016 - 10:45:04
Dernière modification le : mardi 11 octobre 2016 - 01:05:30
Document(s) archivé(s) le : mercredi 11 janvier 2017 - 12:40:56

Fichiers

PauliFlowv6-arxiv.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01377339, version 1
  • ARXIV : 1610.02824

Citation

Simon Perdrix, Luc Sanselme. Determinism and Computational Power of Real Measurement-based Quantum Computation. 2016. <hal-01377339>

Partager

Métriques

Consultations de
la notice

148

Téléchargements du document

53