ON THE WEAK APPROXIMATION OF A SKEW DIFFUSION BY AN EULER-TYPE SCHEME

Abstract : We study the weak approximation error of a skew diffusion with bounded measurable drift and Hölder diffusion coefficient by an Euler-type scheme, which consists of iteratively simulating skew Brownian motions with constant drift. We first establish two sided Gaussian bounds for the density of this approximation scheme. Then, a bound for the difference between the densities of the skew diffusion and its Euler approximation is obtained. Notably, the weak approximation error is shown to be of order h η/2 , where h is the time step of the scheme, η being the Hölder exponent of the diffusion coefficient.
Type de document :
Pré-publication, Document de travail
2016
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01373949
Contributeur : Noufel Frikha <>
Soumis le : jeudi 29 septembre 2016 - 14:25:20
Dernière modification le : lundi 29 mai 2017 - 14:21:36

Fichier

Weak_error_skew_diff.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01373949, version 1

Collections

Citation

N Frikha. ON THE WEAK APPROXIMATION OF A SKEW DIFFUSION BY AN EULER-TYPE SCHEME. 2016. <hal-01373949>

Partager

Métriques

Consultations de
la notice

99

Téléchargements du document

32