Sobolev-Hermite versus Sobolev nonparametric density estimation on R

Abstract : In this paper, our aim is to revisit the nonparametric estimation of f assuming that f is square integrable on R, by using projection estimators on a Hermite basis. These estimators are defined and studied from the point of view of their mean integrated squared error on R. A model selection method is described and proved to perform an automatic bias variance compromise. Then, we present another collection of estimators, of deconvolution type, for which we define another model selection strategy. Considering Sobolev and Sobolev-Hermite spaces, the asymptotic rates of these estimators can be computed and compared: they are mainly proved to be equivalent. However, complexity evaluations prove that the Hermite estimators have a much lower computational cost than their deconvolution (or kernel) counterparts. These results are illustrated through a small simulation study.
Type de document :
Article dans une revue
Annals of the institute of mathematical statistics, A Paraître, 〈10.1007/s10463-017-0624-y〉
Liste complète des métadonnées

Littérature citée [23 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01372985
Contributeur : Fabienne Comte <>
Soumis le : mercredi 28 septembre 2016 - 08:58:45
Dernière modification le : vendredi 27 octobre 2017 - 10:22:46
Document(s) archivé(s) le : jeudi 29 décembre 2016 - 12:16:08

Fichier

hermite_estimation.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Denis Belomestny, Fabienne Comte, Valentine Genon-Catalot. Sobolev-Hermite versus Sobolev nonparametric density estimation on R. Annals of the institute of mathematical statistics, A Paraître, 〈10.1007/s10463-017-0624-y〉. 〈hal-01372985〉

Partager

Métriques

Consultations de la notice

162

Téléchargements de fichiers

74