Design and optimization of heterogeneous tree-based FPGA using 3D technology

Abstract : The CMOS technology scaling has greatly improved the overall performance and density of Field Programmable Gate Arrays (FPGAs). However, when looking at the performance metrics such as speed, area and power consumption, the gap is generally very wide for FPGAs compared to application specific integrated circuits (ASICs) mainly due to the programmable interconnect overhead. We propose a 3-dimensional (3D) design methodology using horizontal design partitioning to vertically stack heterogeneous FPGA designs based on a Tree-based multilevel FPGA architecture. We describe the 3D design and optimization methodology to improve speed, interconnect area and power consumption using Tezzaron's 3D stacking technology.
Document type :
Conference papers
Complete list of metadatas

https://hal.archives-ouvertes.fr/hal-01372833
Contributor : Habib Mehrez <>
Submitted on : Tuesday, September 27, 2016 - 4:46:38 PM
Last modification on : Thursday, March 21, 2019 - 2:31:34 PM

Identifiers

Citation

Vinod Pangracious, Zied Marrakchi, Habib Mehrez. Design and optimization of heterogeneous tree-based FPGA using 3D technology. FPT 2013 - International Conference on Field-Programmable Technology, Dec 2013, Kyoto, Japan. pp.334--337, ⟨10.1109/FPT.2013.6718380⟩. ⟨hal-01372833⟩

Share

Metrics

Record views

111