Mean Geometry for 2D random fields: level perimeter and level total curvature integrals

Abstract : We introduce the level perimeter integral and the total curvature integral associated with a real valued function f defined on the plane R^2 as integrals allowing to compute the perimeter of the excursion set of f above level t and the total (signed) curvature of its boundary for almost every level t. Thanks to the Gauss-Bonnet theorem, the total curvature is directly related to the Euler Characteristic of the excursion set. We show that the level perimeter and the total curvature integrals can be explicitly computed in two different frameworks: piecewise constant functions (also called here elementary functions) and smooth (at least C^2) functions. Considering 2D random fields (in particular considering shot noise random fields), we compute their mean perimeter and total curvature integrals, and this provides new explicit computations of the mean perimeter and Euler Characteristic densities of excursion sets, beyond the Gaussian framework.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01370902
Contributeur : Hermine Biermé <>
Soumis le : mercredi 11 octobre 2017 - 11:48:52
Dernière modification le : vendredi 13 octobre 2017 - 01:16:26

Fichier

LTC-EC-vfinal-preprint.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01370902, version 3

Citation

Hermine Biermé, Agnès Desolneux. Mean Geometry for 2D random fields: level perimeter and level total curvature integrals. 2017. 〈hal-01370902v3〉

Partager

Métriques

Consultations de la notice

73

Téléchargements de fichiers

12