Classification and regression using a constrained convex splitting method

Abstract : This paper deals with sparse feature selection and grouping for classification and regression. The classification or regression problems under consideration consists in minimizing a convex empirical risk function subject to an $\ell^1$ constraint, a pairwise $\ell^\infty$ constraint, or a pairwise $\ell^1$ constraint. Existing work, such as the Lasso formulation, has focused mainly on Lagrangian penalty approximations, which often require ad hoc or computationally expensive procedures to determine the penalization parameter. We depart from this approach and address the constrained problem directly via a splitting method. The structure of the method is that of the classical gradientprojection algorithm, which alternates a gradient step on the objective and a projection step onto the lower level set modeling the constraint. The novelty of our approach is that the projection step is implemented via an outer approximation scheme in which the constraint set is approximated by a sequence of simple convex sets consisting of the intersection of two half-spaces. Convergence of the iterates generated by the algorithm is established for a general smooth convex minimization problem with inequality constraints. Experiments on both synthetic and biological data show that our method outperforms penalty methods.
Type de document :
Article dans une revue
IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2017
Liste complète des métadonnées

Littérature citée [35 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01367108
Contributeur : Michel Barlaud <>
Soumis le : lundi 22 mai 2017 - 12:36:08
Dernière modification le : mardi 30 mai 2017 - 01:17:13
Document(s) archivé(s) le : mercredi 23 août 2017 - 15:12:32

Fichier

IEEE_sp_2017.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Collections

Citation

Michel Barlaud, Wafa Belhajali, Patrick Louis Combettes, Lionel Fillatre. Classification and regression using a constrained convex splitting method. IEEE Transactions on Signal Processing, Institute of Electrical and Electronics Engineers, 2017. 〈hal-01367108〉

Partager

Métriques

Consultations de la notice

131

Téléchargements de fichiers

43