Minimum Eccentricity Shortest Path Problem: an Approximation Algorithm and Relation with the k-Laminarity Problem

Abstract : The Minimum Eccentricity Shortest Path (MESP) Problem consists in determining a shortest path (a path whose length is the distance between its extremities) of minimum eccentricity in a graph. It was introduced by Dragan and Leitert [9] who described a linear-time algorithm which is an 8-approximation of the problem. In this paper, we study deeper the double-BFS procedure used in that algorithm and extend it to obtain a linear-time 3-approximation algorithm. We moreover study the link between the MESP problem and the notion of laminarity, introduced by Völkel et al [12], corresponding to its restriction to a diameter (i.e. a shortest path of maximum length), and show tight bounds between MESP and laminarity parameters.
Type de document :
Pré-publication, Document de travail
MAP5 2016-26. 2016
Liste complète des métadonnées

Littérature citée [14 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01366782
Contributeur : Etienne Birmele <>
Soumis le : jeudi 15 septembre 2016 - 12:41:47
Dernière modification le : jeudi 26 octobre 2017 - 12:40:01
Document(s) archivé(s) le : vendredi 16 décembre 2016 - 13:59:30

Fichiers

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01366782, version 1
  • ARXIV : 1609.04593

Collections

Citation

Etienne Birmelé, Fabien De Montgolfier, Léo Planche. Minimum Eccentricity Shortest Path Problem: an Approximation Algorithm and Relation with the k-Laminarity Problem. MAP5 2016-26. 2016. 〈hal-01366782〉

Partager

Métriques

Consultations de la notice

79

Téléchargements de fichiers

141