(Hyper)-Graphical Models in Biomedical Image Analysis

Abstract : Computational vision, visual computing and biomedical image analysis have made tremendous progress over the past two decades. This is mostly due the development of efficient learning and inference algorithms which allow better and richer modeling of image and visual understanding tasks. Hyper-Graph representations are among the most prominent tools to address such perception through the casting of perception as a graph optimization problem. In this paper, we briefly introduce the importance of such representations, discuss their strength and limitations, provide appropriate strategies for their inference and present their application to address a variety of problems in biomedical image analysis.
Type de document :
Article dans une revue
Medical Image Analysis, Elsevier, 2016, 〈10.1016/j.media.2016.06.028〉
Liste complète des métadonnées

Littérature citée [47 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01359107
Contributeur : Evangelia Zacharaki <>
Soumis le : jeudi 1 septembre 2016 - 18:21:42
Dernière modification le : jeudi 15 juin 2017 - 15:36:29
Document(s) archivé(s) le : dimanche 4 décembre 2016 - 01:23:32

Fichiers

MedIA_1147_corrected.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

Citation

Nikos Paragios, Enzo Ferrante, Ben Glocker, Nikos Komodakis, Sarah Parisot, et al.. (Hyper)-Graphical Models in Biomedical Image Analysis. Medical Image Analysis, Elsevier, 2016, 〈10.1016/j.media.2016.06.028〉. 〈hal-01359107〉

Partager

Métriques

Consultations de la notice

486

Téléchargements de fichiers

143