On Keyframe Positioning for Pose Graphs Applied to Visual SLAM

Andru Putra Twinanda 1 Maxime Meilland 1 Sidibé Désiré 2 Andrew I. Comport 1
2 Le2i - Equipe combinatoire
LIRIS - Laboratoire d'InfoRmatique en Image et Systèmes d'information, Le2i - Laboratoire Electronique, Informatique et Image
Abstract : n this work, a new method is introduced for localization and keyframe identification to solve a Simultaneous Localization and Mapping (SLAM) problem. The proposed approach is based on a dense spherical acquisition system that synthesizes spherical intensity and depth images at arbitrary locations. The images are related by a graph of 6 degrees-of-freedom (DOF) poses which are estimated through spherical registration. A direct image-based method is provided to estimate pose by using both depth and color information simultaneously. A new keyframe identification method is proposed to build the map of the environment by using the covariance matrix between raletive 6 DOF poses, which is basically the uncertainty of the estimated pose. This new approach is shown to be more robust than an error-based keyframe identification method. Navigation using the maps built from our method also gives less trajectory error than using maps from other methods.
Type de document :
Communication dans un congrès
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, 2013, Tokyo, Japan. 2013
Liste complète des métadonnées

https://hal.archives-ouvertes.fr/hal-01357358
Contributeur : Andrew Comport <>
Soumis le : lundi 29 août 2016 - 16:35:24
Dernière modification le : mardi 30 août 2016 - 01:04:54

Identifiants

  • HAL Id : hal-01357358, version 1

Collections

Citation

Andru Putra Twinanda, Maxime Meilland, Sidibé Désiré, Andrew I. Comport. On Keyframe Positioning for Pose Graphs Applied to Visual SLAM. 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, 5th Workshop on Planning, Perception and Navigation for Intelligent Vehicles, 2013, Tokyo, Japan. 2013. <hal-01357358>

Partager

Métriques

Consultations de la notice

79