Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: Necessary and sufficient conditions of stability: Extended Version

Eliane Bécache 1 Maryna Kachanovska 1
1 POEMS - Propagation des Ondes : Étude Mathématique et Simulation
Inria Saclay - Ile de France, ENSTA ParisTech UMA - Unité de Mathématiques Appliquées, CNRS - Centre National de la Recherche Scientifique : UMR7231
Abstract : In this work we consider a problem of modelling of 2D anisotropic dispersive wave propagation in unbounded domains with the help of perfectly matched layers (PML). We study the Maxwell equations in passive media with a frequency-dependent diagonal tensor of dielectric permittivity and magnetic permeability. An application of the traditional PMLs to this kind of problems often results in instabilities. We provide a recipe for the construction of new, stable PMLs. For a particular case of non-dissipative materials, we show that a known necessary stability condition of the perfectly matched layers is also sufficient. We illustrate our statements with theoretical and numerical arguments.
Type de document :
Pré-publication, Document de travail
2017
Liste complète des métadonnées


https://hal.archives-ouvertes.fr/hal-01356811
Contributeur : Maryna Kachanovska <>
Soumis le : jeudi 2 mars 2017 - 09:59:22
Dernière modification le : jeudi 15 juin 2017 - 09:08:43
Document(s) archivé(s) le : mercredi 31 mai 2017 - 13:09:26

Fichier

main.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01356811, version 2

Citation

Eliane Bécache, Maryna Kachanovska. Stable perfectly matched layers for a class of anisotropic dispersive models. Part I: Necessary and sufficient conditions of stability: Extended Version. 2017. <hal-01356811v2>

Partager

Métriques

Consultations de
la notice

119

Téléchargements du document

52