Hard Negative Mining for Metric Learning Based Zero-Shot Classification

Maxime Bucher 1, 2 Stéphane Herbin 1 Frédéric Jurie 2
2 Equipe Image - Laboratoire GREYC - UMR6072
GREYC - Groupe de Recherche en Informatique, Image, Automatique et Instrumentation de Caen
Abstract : Zero-Shot learning has been shown to be an efficient strategy for domain adaptation. In this context, this paper builds on the recent work of Bucher et al. [1], which proposed an approach to solve Zero-Shot classification problems (ZSC) by introducing a novel metric learning based objective function. This objective function allows to learn an optimal embedding of the attributes jointly with a measure of similarity between images and attributes. This paper extends their approach by proposing several schemes to control the generation of the negative pairs, resulting in a significant improvement of the performance and giving above state-of-the-art results on three challenging ZSC datasets.
Type de document :
Communication dans un congrès
ECCV 16 WS TASK-CV: Transferring and Adapting Source Knowledge in Computer Vision, Oct 2016, Amsterdam, Netherlands. ECCV 16 WS TASK-CV: Transferring and Adapting Source Knowledge in Computer Vision, 〈http://adas.cvc.uab.es/task-cv2016/〉
Liste complète des métadonnées

Littérature citée [18 références]  Voir  Masquer  Télécharger

https://hal.archives-ouvertes.fr/hal-01356757
Contributeur : Maxime Bucher <>
Soumis le : vendredi 26 août 2016 - 13:42:00
Dernière modification le : jeudi 7 février 2019 - 17:45:12
Document(s) archivé(s) le : dimanche 27 novembre 2016 - 12:36:38

Fichiers

1-paper.pdf
Fichiers produits par l'(les) auteur(s)

Identifiants

  • HAL Id : hal-01356757, version 1
  • ARXIV : 1608.07441

Citation

Maxime Bucher, Stéphane Herbin, Frédéric Jurie. Hard Negative Mining for Metric Learning Based Zero-Shot Classification. ECCV 16 WS TASK-CV: Transferring and Adapting Source Knowledge in Computer Vision, Oct 2016, Amsterdam, Netherlands. ECCV 16 WS TASK-CV: Transferring and Adapting Source Knowledge in Computer Vision, 〈http://adas.cvc.uab.es/task-cv2016/〉. 〈hal-01356757〉

Partager

Métriques

Consultations de la notice

604

Téléchargements de fichiers

379